
CHEMOSELECTIVE ELECTROLYTIC CHLORINATION OF METHYL GROUP OF 3-METHYL-3-BUTENOATE MOIETY OF THIAZOLINE-AZETIDINONE HOMOLOGUES

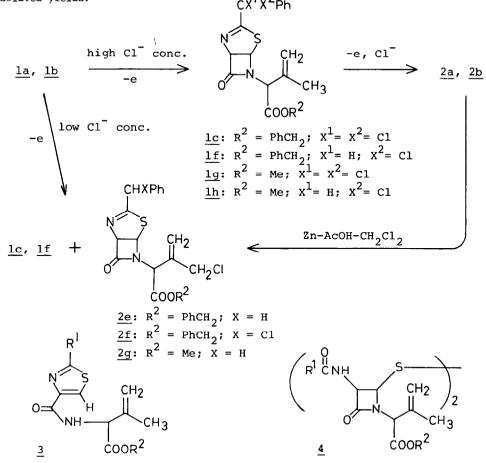
Sıgeru Torii, ^{*} Hıdeo Tanaka, Norio Saitoh, Takashi Sıroi Mıchio Sasaoka, and Junzo Nokamı[†] Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan [†]Okayama University of Science, Rıdaı, Okayama 700, Japan

ABSTRACT: Chemoselective electrochlorination of the methyl group on the 3-methyl-3-butenoate moiety of thiazoline-azetidinone derivatives derived from penicillins G and V has been performed in a $CH_2Cl_2-H_2O-NaCl-H_2SO_4-(Pt or C electrodes)$ system by adjusting the amount of electricity passed as well as the concentration of Cl^- in the media.

Synthetic approaches to cephalosporin antibiotics by the conversion of readily available penicillins have proved to be the most fruitful ones. ¹⁾ Especially, thiazoline-azetidinone derivatives $\underline{1}^{(2)}$ have been used as key intermediates for the penicillin-cephalosporin conversion in which the oxidative functionalization of the methyl group of the 3-methyl-3-butenoate moiety is an essential step. ³⁾ Recently, Cooper reported the direct chlorination of $\underline{1}$ with chlorine (25 °C, 3 days) or t-butyl hypochlorite (~60% yields), giving the corresponding chlorinated compounds 2, bearing benzyl, phenyl, p-tolyl, and phenoxymethyl groups as the R³ substituents. ^{3a,b)}

During our studies on halide salts promoted electrosynthesis ⁴) we found that electrolysis of $1 (R^1 = PhCH_2, PhCCl_2, PhOCH_2, and PhC=0)$ in two-phase systems (H₂O-CH₂Cl₂-Pt or C electrodes) provided chemoselective electro-chlorination products $lg (R^1 = PhCCl_2)$ and 2a-f, depending on the amount of electricity passed as well as on the concentration of Cl⁻ in the media.

A typical electrochemical trichlorination procedure of <u>la</u> ($\mathbb{R}^1 = PhCH_2$, $\mathbb{R}^2 = Me$) is as follows: A stirred mixture of thiazoline-azetidinone <u>la</u> (400 mg), NaCl (8g), and H₂SO₄ (0.5 ml) in H₂O (24 ml)-CH₂Cl₂ (20 ml) was electrolyzed by using platinum foil electrodes (anode 6 cm²) in an undivided cell at a constant current (10 mA/cm²) at room temperature. After passing 15 F/mol of electricity, the organic phase was separated and the usual workup followed by column chromatography (SiO₂, benzene-AcOEt; 5/1) gave <u>2a</u> ($\mathbb{R}^3 = PhCCl_2$, $\mathbb{R}^2 = Me$) in 89% yield: mp 97.5-98.5 °C (from AcOEt-hexane); IR (CHCl₃) 1780, 1745, 1603 cm⁻¹; ¹H NMR (CDCl₃) & 3.75 (s, 3H), 3.81 (s, 2H), 5.14 (s, 2H), 5.41 (s, 1H), 6.05 (m, 2H), 7.30-7.90 (m, 5H).


Likewise, the electro-chlorination of <u>lb-e</u> proceeded smoothly, yielding the corresponding allylic chlorides <u>2b-d</u>. The results are summarized in the Table. Carbon electrodes can be used without any disadvantage (entry 2). The effect of H_2SO_4 was remarkable, since the absence of H_2SO_4 resulted in a mixture of benzylic chlorides <u>lg</u> (25%), <u>lh</u> (20%), and recovered <u>la</u> (34%) together with complex compounds (20%) after passage of 15 F/mol of electricity. Particularly noteworthy is the fact that the two-phase electrolysis procedure brought about no appreciable amount of hydrolysis products on either the thiazoline or the β -lactam ring. In place of CH₂Cl₂, other hydrophobic solvents, e.g., CHCl₃ and AcOEt, could be used. However, the use of hydrophylic solvents, e.g., THF, CH₃CN, CH₃CN-THF, or CH₂Cl₂-THF, even in a two phase system, facilitated hydrolysis of the thiazoline and/or the β -lactam ring, leading to the ring opened products 3 and/or 4.

In the course of electro-chlorination of $\underline{lb} (\mathbb{R}^1 = PhCH_2)$, leading to trichlorides $\underline{2b}$ (entry 3),gem-dichloride $\underline{lc} (89\%)$ was obtained as an initial product at a higher concentration of sodium chloride (lg/3 ml) in water when 10 F/mol of electricity was passed. Electrolysis of the dichloride \underline{lc} in the same media afforded $\underline{2b}$ in 85% yield (entry 4). The result is in contrast to that of the electrolysis at a lower concentration of aqueous sodium chloride (100 mg/3 ml), which gave rise to the competitive formation of benzylic and allylic chlorides \underline{lc} (9%), $\underline{lf} (11\%)$, $\underline{2e} (10\%)$, and $\underline{2f} (11\%)$. This change of the product distribution is due to

entry	substrate <u>1</u>			electrolysis electricity		product <u>2</u>	
		R ¹	R ²	system	F/mol	^в 3	(Yield, %) ^{b)}
1	la	PhCH ₂	Me	H ₂ O-CH ₂ Cl ₂ -(Pt)	15	<u>2a</u>	PhCC1 ₂ (89)
2	<u>la</u>	PhCH ₂	Me	н ₂ 0-сн ₂ с1 ₂ -(с)	15	<u>2a</u>	PhCC1 ₂ (82)
3	<u>1b</u>	PhCH ₂	PhCH ₂	H ₂ 0-CHC1 ₃ -(Pt)	25	2 <u>b</u>	PhCC1 ₂ (76)
4	lc	PhCC12	PhCH ₂	H ₂ 0-CHC1 ₃ -(Pt)	10	2ь	PhCC1 ₂ (85)
5	<u>1d</u>	PhOCH ₂	Me	H ₂ O-CH ₂ C1 ₂ -(Pt)	10	<u>2c</u>	PhOCH ₂ (77)
б	le	PhCO	Me	H ₂ O-CH ₂ Cl ₂ -(Pt)	5	<u>2d</u>	PhCO (80)

Table Electro-chlorination of Thiazoline-azetidinones^{a)}

^{a)}Carried out at a constant current of 10 mA/cm² at room temperature. ^{b)}Isolated yields. $CX^{1}X^{2}Ph$

the fact that the discharge of Cl⁻ can produce different chlorinating agents, e.g., Cl₂, HOCl, HClO₂, etc., depending upon the Cl⁻ concentration, the pH, and the oxidation potentials in the media. ⁵ Conversion of <u>2a</u> and <u>2b</u> ($\mathbb{R}^3 = PhCl_2$) into the corresponding allylic chlorides <u>2e</u> and <u>2g</u> ($\mathbb{R}^3 = PhCH_2$) can be achieved in over 90% yields by removal of the chlorine atoms attached to the benzyl carbon by treatment with zinc dust in AcOH-CH₂Cl₂ (1/4) at O-2 ^oC.

The extention of this versatile electro-chlorination reaction is in progress and will be reported in due course.

REFERENCES

- "Recent Advances in the Chemistry of β-lactam Antibiotics", J. Elks, Ed., Chem. Soc. Burlington House, London (No. 28), 1977; D. N. McGregor, Fortschr. Chem. Org. Naturstoffe, <u>31</u>, 1 (1974).
- R. D. G. Cooper and F. L. José, J. Am. Chem. Soc., <u>92</u>, 2575 (1970); R. D. G. Cooper, 1bid., <u>92</u>, 5010 (1970).
- 3) a) R. D. G. Cooper, Tetrahedron Lett., <u>21</u>, 781 (1980); b) Japan Kokai, 55-147293 (1980);
 c) S. Uyeo, T. Aoki, H. Itani, T. Tsuji, and W. Nagata, Heterocycles, <u>10</u>, 99 (1978); d)
 G. Franceschi, M. Foglio, P. Masi, A. Suarato, G. Plamidessi, L. Bernardi, F. Arcamone, and G. Cainelli, J. Am. Chem. Soc., <u>99</u>, 248 (1977); Japan Kokai, 51-43791 (1976). See also ref. 1).
- 4) S. Torli, K. Uneyama, T. Nakal, and T. Yasuda, Tetrahedron Lett., in press (1981).
- 5) G. Valensı, E. Deltombe, N. de Zoubov, C. Vanleugenhagehe, and M. Pourbaix, "Atlas of Electrochemical Equilibrium in Aqueous Solutions", M. Pourbaix, Ed., Pergamon Press, Oxford, 1966; p 590. Details of the reaction mechanism will be discussed elsewhere.

(Received in Japan 9 May 1981)

3196